The multilocalizing proteome
The immunofluorescence (IF)-based approach used in the Subcellular Section allows the analysis of protein distribution in all organelles and cellular substructures simultaneously. This allows for study of spatial distribution of proteins in their cellular context and identification of proteins that localize to more than one compartment, referred to as "multilocalizing proteins" (MLPs).
Figure 1 shows example images of MLPs representing common combinations of locations and gives an idea of the cellular roles of MLPs. The most common case is that MLPs are located at multiple sites at the same time, within the same cell, but there are also MLPs that are associated with cell line-specific variations. For example, ZNF554 is a solely nuclear protein in RT4 and SH-SY5Y cells, but becomes a MLP in U-2 OS due to its additional prominent location in the nucleoli.
IPO7 - A-431
RPL19 - A-431
CCDC51 - U-2 OS
KIAA1522 - HaCaT
ITM2B - RT4
ENO1 - U-2 OS
Figure 1. Examples of MLPs identified in the Subcellular Section. IPO7 mediates the import of proteins from the cytosol to the nucleus and can cross the nuclear membrane rapidly in both directions (detected in A-431 cells). RPL19 is a component of the ribosomal 60S subunit and was identified in nucleoli, where ribosomes are assembled, and in the cytosol and endoplasmic reticulum, where protein synthesis takes place (detected in A-431 cells). CCDC51 encodes an uncharacterized protein located in the mitochondria and nucleoplasm (detected in U-2 OS). KIAA1522 encodes an uncharacterized protein identified in the plasma membrane and nucleoplasm (detected in HaCaT cells). ITM2B is a transmembrane protein processed in the Golgi apparatus and vesicles. The resulting small peptide is secreted (detected in RT4 cells). ENO1 is a well described moonlighting protein. It has several functions in different compartments including a role in glycolysis in the cytosol, and as a surface protein in the plasma membrane (detected in U-2 OS cells).
MLPs in the Subcellular Section
More than half of the proteins localized in the Subcellular Section (56%, n=7329) are MLPs (Figure 2). Of these, around 32% (n=2364) can be found at three or more locations. The distribution of single and multilocalizing proteins for each organelle is shown in Figure 3 and Table 1. The percentage of MLPs in the individual organelle proteomes varies, but is often more than half because of the double counting of MLPs. Organelles such as the plasma membrane, cytosol, nucleus, and nucleoli share the majority of their proteins with other subcellular structures. This may reflect a need for proteins that operate across the borders of these organelles in order to regulate metabolic reactions or gene expression, or to transmit information from the surrounding environment. In contrast, the proteomes of mitochondria contain mainly single localizing proteins, suggesting that this compartment is more self-contained with regards to its biological function.
Figure 2. Bar plot showing the number of protein-coding genes for single or multilocalizing proteins.
Figure 3. Bar plot showing the distribution of proteins localized to one or multiple organelles. Note that proteins localized to different substructures of organelles (e.g. nuclear bodies and nucleoplasm) are considered multilocalizing.
Table 1. Detailed information about single and multilocalizing proteins in the proteome of organelles and substructures.
The number of MLPs is large. To get a better overview of the multilocalizing proteome, organelles can be grouped into three meta-compartments, and genes encoding MLPs can be aligned on a circular plot (Figure 4). The meta-compartments are "Nucleus" (nuclear and nucleolar structures), "Cytoplasm" (cytosol, mitochondria, and the different types of cytoskeleton), and "Secretory Pathway" (endoplasmic reticulum, Golgi apparatus, vesicles, plasma membrane). This reveals subordinate organization patterns of the MLPs. For instance, for the meta-compartments cytoplasm and nucleus, a common pattern is multilocalization between the predominant organelles cytosol and nucleoplasm, respectively. There are also many proteins that localize to more than one of the fine substructures within each of these meta- compartments. The MLPs in the secretory pathway exhibit a more sequential pattern likely reflecting the directional protein trafficking. In addition, the secretory pathway shares a strikingly high number of MLPs with the nucleus, despite that they are not in direct physical contact with each other. In agreement, cytoscape plots of each organelle (Figure 5, at end of the page) show that dual locations to the nucleoplasm together with the Golgi apparatus or vesicles are indeed overrepresented. This suggests that the proteomes of organelles in the secretory pathway are more versatile and should not be simplified to their role in protein secretion.
Figure 4. Circular plot with the identified proteins of each compartment presented and sorted by meta-compartments (red: Nucleus, blue: Cytoplasm, yellow: Secretory Pathway). Multilocalizing proteins appearing more than once in the plot are connected by a line
Why does the cell have MLPs?
MLPs present several advantages for the cell, some of which are crucial for cell survival. Shuttling proteins constantly switch their location in order to transport other proteins between organelles, making their multilocalization inseparably tied to their function. For example, members of the importin family transport proteins from the cytosol to the nucleus and hence are found in both organelles (Lange A et al. (2007), see also Figure 1). Another advantage of multilocalization is the possibility to make use of the same proteins in similar cellular processes and reactions, even if they occur in different subcellular compartments. For example, it has been shown that mitochondria and peroxisomes share some enzymes in their lipid metabolism (Ashmarina LI et al. (1999)). A switch of the subcellular location can also be an important way of generating a quick cellular response upon environmental changes, and external or internal cues. For example, receptors such as ERBB2 located in the plasma membrane are known to move to the nucleus after stimulation, where they change the expression pattern of target genes. This translocation has a profound impact on cancer initiation, progression, and prognosis of human cancers (Wang SC et al. (2009)).
Some of the MLPs are not just multilocalizing, but also multifunctional proteins. Multifunctional proteins do not fit in the paradigm of "one gene - one protein - one function", and certainly adds another dimension to cellular complexity. Multifunctionality may be the result of eg. gene fusions, expression of several splice variants, different post-translational modifications, different interaction partners and/or multilocalization of the protein. An extreme group of multifunctional proteins are the moonlighting proteins. The term "moonlighting" has been used for people who work in different jobs during daylight and moonlight, and like their human counterpart, moonlighting proteins have two or more completely different biochemical functions (Jeffery CJ. (1999)). Moonlighting proteins may provide connections and switches between different cellular reactions, pathways and processes, making it possible for cells to coordinate responses to a changing environment (Jeffery CJ. (2015)). For example, some biosynthetic enzymes moonlight as transcription factors, in order to provide a feedback-loop for transcription of genes involved in the pathway. An example of a moonlighting and multilocalizing protein is ENO1 (Figure 1) that acts as a glycolytic enzyme in the cytosol, but also as a plasminogen-receptor in the plasma membrane, and as a transcriptional repressor in the nucleus (Pancholi V. (2001)).
The Human Protein Atlas does not provide functional studies of proteins and therefore cannot determine if a MLP is multifunctional. However, the description of proteins at multiple locations is an important step in the discovery of multifunctional and moonlighting proteins and the spatial information provided in the Subcellular Section could be integrated into existing prediction models (Chapple CE et al. (2015)).
Figure 5. Cytoscape plots showing the distribution of MLPs that are shared with the major organelle proteomes. The black middle node links to all proteins localizing to the selected major organelle proteome, while the gray nodes links to all MLPs shared with each of the other major organelle proteomes. Only gray nodes with more than one protein and at least 0.5% of all human proteins are shown. The colored connecting nodes show the number of proteins that are exclusively shared between the compartments. The circle sizes of the connecting nodes are related to the number of proteins exclusively shared between the compartments. The cyan colored nodes show combinations that are significantly overrepresented, while magenta colored nodes show combinations that are significantly underrepresented as compared to the probability of observing that combination based on the frequency of each annotation and a hypergeometric test (p≤0.05). Each node is clickable and link to a list of the corresponding genes.
Relevant links and publications
Uhlen M et al., A proposal for validation of antibodies. Nat Methods. (2016)
PubMed: 27595404 DOI: 10.1038/nmeth.3995
Stadler C et al., Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteomics. (2012)
PubMed: 22361696 DOI: 10.1016/j.jprot.2012.01.030
Poser I et al., BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. (2008)
PubMed: 18391959 DOI: 10.1038/nmeth.1199
Skogs M et al., Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res. (2017)
PubMed: 27723985 DOI: 10.1021/acs.jproteome.6b00821
Parikh K et al., Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. (2019)
PubMed: 30814735 DOI: 10.1038/s41586-019-0992-y
Menon M et al., Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun. (2019)
PubMed: 31653841 DOI: 10.1038/s41467-019-12780-8
Wang L et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. (2020)
PubMed: 31915373 DOI: 10.1038/s41556-019-0446-7
Wang Y et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. (2020)
PubMed: 31753849 DOI: 10.1084/jem.20191130
Liao J et al., Single-cell RNA sequencing of human kidney. Sci Data. (2020)
PubMed: 31896769 DOI: 10.1038/s41597-019-0351-8
MacParland SA et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. (2018)
PubMed: 30348985 DOI: 10.1038/s41467-018-06318-7
Vieira Braga FA et al., A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. (2019)
PubMed: 31209336 DOI: 10.1038/s41591-019-0468-5
Vento-Tormo R et al., Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. (2018)
PubMed: 30429548 DOI: 10.1038/s41586-018-0698-6
Henry GH et al., A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Rep. (2018)
PubMed: 30566875 DOI: 10.1016/j.celrep.2018.11.086
Chen J et al., PBMC fixation and processing for Chromium single-cell RNA sequencing. J Transl Med. (2018)
PubMed: 30016977 DOI: 10.1186/s12967-018-1578-4
Guo J et al., The adult human testis transcriptional cell atlas. Cell Res. (2018)
PubMed: 30315278 DOI: 10.1038/s41422-018-0099-2
Qadir MMF et al., Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci U S A. (2020)
PubMed: 32354994 DOI: 10.1073/pnas.1918314117
Solé-Boldo L et al., Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. (2020)
PubMed: 32327715 DOI: 10.1038/s42003-020-0922-4
Lukassen S et al., SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. (2020)
PubMed: 32246845 DOI: 10.15252/embj.20105114
Wang W et al., Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med. (2020)
PubMed: 32929266 DOI: 10.1038/s41591-020-1040-z
De Micheli AJ et al., A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle. (2020)
PubMed: 32624006 DOI: 10.1186/s13395-020-00236-3
Man L et al., Comparison of Human Antral Follicles of Xenograft versus Ovarian Origin Reveals Disparate Molecular Signatures. Cell Rep. (2020)
PubMed: 32783948 DOI: 10.1016/j.celrep.2020.108027
Hildreth AD et al., Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol. (2021)
PubMed: 33907320 DOI: 10.1038/s41590-021-00922-4
He S et al., Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. (2020)
PubMed: 33287869 DOI: 10.1186/s13059-020-02210-0
Bhat-Nakshatri P et al., A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. Cell Rep Med. (2021)
PubMed: 33763657 DOI: 10.1016/j.xcrm.2021.100219
Takahashi H et al., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. (2012)
PubMed: 22362160 DOI: 10.1038/nprot.2012.005
Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature. (2007)
PubMed: 17151600 DOI: 10.1038/nature05453
Kircher M et al., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. (2012)
PubMed: 22021376 DOI: 10.1093/nar/gkr771
Uhlén M et al., The human secretome. Sci Signal. (2019)
PubMed: 31772123 DOI: 10.1126/scisignal.aaz0274
Uhlen M et al., A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. (2019)
PubMed: 31857451 DOI: 10.1126/science.aax9198
Sjöstedt E et al., An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. (2020)
PubMed: 32139519 DOI: 10.1126/science.aay5947
Robinson JL et al., An atlas of human metabolism. Sci Signal. (2020)
PubMed: 32209698 DOI: 10.1126/scisignal.aaz1482
Uhlen M et al., A pathology atlas of the human cancer transcriptome. Science. (2017)
PubMed: 28818916 DOI: 10.1126/science.aan2507
Hikmet F et al., The protein expression profile of ACE2 in human tissues. Mol Syst Biol. (2020)
PubMed: 32715618 DOI: 10.15252/msb.20209610
Gordon DE et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. (2020)
PubMed: 32353859 DOI: 10.1038/s41586-020-2286-9
Karlsson M et al., A single-cell type transcriptomics map of human tissues. Sci Adv. (2021)
PubMed: 34321199 DOI: 10.1126/sciadv.abh2169
Pollard TD et al., Actin, a central player in cell shape and movement. Science. (2009)
PubMed: 19965462 DOI: 10.1126/science.1175862
Mitchison TJ et al., Actin-based cell motility and cell locomotion. Cell. (1996)
PubMed: 8608590
Pollard TD et al., Molecular Mechanism of Cytokinesis. Annu Rev Biochem. (2019)
PubMed: 30649923 DOI: 10.1146/annurev-biochem-062917-012530
dos Remedios CG et al., Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. (2003)
PubMed: 12663865 DOI: 10.1152/physrev.00026.2002
Campellone KG et al., A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. (2010)
PubMed: 20237478 DOI: 10.1038/nrm2867
Rottner K et al., Actin assembly mechanisms at a glance. J Cell Sci. (2017)
PubMed: 29032357 DOI: 10.1242/jcs.206433
Bird RP., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. (1987)
PubMed: 3677050 DOI: 10.1016/0304-3835(87)90157-1
HUXLEY AF et al., Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. (1954)
PubMed: 13165697
HUXLEY H et al., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. (1954)
PubMed: 13165698
Svitkina T., The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29295889 DOI: 10.1101/cshperspect.a018267
Kelpsch DJ et al., Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken). (2018)
PubMed: 30312531 DOI: 10.1002/ar.23959
Malumbres M et al., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. (2009)
PubMed: 19238148 DOI: 10.1038/nrc2602
Massagué J., G1 cell-cycle control and cancer. Nature. (2004)
PubMed: 15549091 DOI: 10.1038/nature03094
Hartwell LH et al., Cell cycle control and cancer. Science. (1994)
PubMed: 7997877 DOI: 10.1126/science.7997877
Barnum KJ et al., Cell cycle regulation by checkpoints. Methods Mol Biol. (2014)
PubMed: 24906307 DOI: 10.1007/978-1-4939-0888-2_2
Weinberg RA., The retinoblastoma protein and cell cycle control. Cell. (1995)
PubMed: 7736585 DOI: 10.1016/0092-8674(95)90385-2
Morgan DO., Principles of CDK regulation. Nature. (1995)
PubMed: 7877684 DOI: 10.1038/374131a0
Teixeira LK et al., Ubiquitin ligases and cell cycle control. Annu Rev Biochem. (2013)
PubMed: 23495935 DOI: 10.1146/annurev-biochem-060410-105307
King RW et al., How proteolysis drives the cell cycle. Science. (1996)
PubMed: 8939846 DOI: 10.1126/science.274.5293.1652
Cho RJ et al., Transcriptional regulation and function during the human cell cycle. Nat Genet. (2001)
PubMed: 11137997 DOI: 10.1038/83751
Whitfield ML et al., Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. (2002)
PubMed: 12058064 DOI: 10.1091/mbc.02-02-0030.
Boström J et al., Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One. (2017)
PubMed: 29228002 DOI: 10.1371/journal.pone.0188772
Lane KR et al., Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins. PLoS One. (2013)
PubMed: 23520512 DOI: 10.1371/journal.pone.0058456
Ohta S et al., The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. (2010)
PubMed: 20813266 DOI: 10.1016/j.cell.2010.07.047
Ly T et al., A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. Elife. (2014)
PubMed: 24596151 DOI: 10.7554/eLife.01630
Pagliuca FW et al., Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell. (2011)
PubMed: 21816347 DOI: 10.1016/j.molcel.2011.05.031
Ly T et al., Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. Elife. (2015)
PubMed: 25555159 DOI: 10.7554/eLife.04534
Mahdessian D et al., Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature. (2021)
PubMed: 33627808 DOI: 10.1038/s41586-021-03232-9
Dueck H et al., Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays. (2016)
PubMed: 26625861 DOI: 10.1002/bies.201500124
Snijder B et al., Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. (2011)
PubMed: 21224886 DOI: 10.1038/nrm3044
Thul PJ et al., A subcellular map of the human proteome. Science. (2017)
PubMed: 28495876 DOI: 10.1126/science.aal3321
Cooper S et al., Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle. Cell Div. (2007)
PubMed: 17892542 DOI: 10.1186/1747-1028-2-28
Davis PK et al., Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques. (2001)
PubMed: 11414226 DOI: 10.2144/01306rv01
Domenighetti G et al., Effect of information campaign by the mass media on hysterectomy rates. Lancet. (1988)
PubMed: 2904581 DOI: 10.1016/s0140-6736(88)90943-9
Scialdone A et al., Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. (2015)
PubMed: 26142758 DOI: 10.1016/j.ymeth.2015.06.021
Sakaue-Sawano A et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. (2008)
PubMed: 18267078 DOI: 10.1016/j.cell.2007.12.033
Grant GD et al., Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. (2013)
PubMed: 24109597 DOI: 10.1091/mbc.E13-05-0264
Semple JW et al., An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO J. (2006)
PubMed: 17053779 DOI: 10.1038/sj.emboj.7601391
Kilfoil ML et al., Stochastic variation: from single cells to superorganisms. HFSP J. (2009)
PubMed: 20514130 DOI: 10.2976/1.3223356
Ansel J et al., Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet. (2008)
PubMed: 18404214 DOI: 10.1371/journal.pgen.1000049
Colman-Lerner A et al., Regulated cell-to-cell variation in a cell-fate decision system. Nature. (2005)
PubMed: 16170311 DOI: 10.1038/nature03998
Liberali P et al., Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet. (2015)
PubMed: 25446316 DOI: 10.1038/nrg3768
Elowitz MB et al., Stochastic gene expression in a single cell. Science. (2002)
PubMed: 12183631 DOI: 10.1126/science.1070919
Kaern M et al., Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. (2005)
PubMed: 15883588 DOI: 10.1038/nrg1615
Bianconi E et al., An estimation of the number of cells in the human body. Ann Hum Biol. (2013)
PubMed: 23829164 DOI: 10.3109/03014460.2013.807878
Malumbres M., Cyclin-dependent kinases. Genome Biol. (2014)
PubMed: 25180339
Collins K et al., The cell cycle and cancer. Proc Natl Acad Sci U S A. (1997)
PubMed: 9096291
Zhivotovsky B et al., Cell cycle and cell death in disease: past, present and future. J Intern Med. (2010)
PubMed: 20964732 DOI: 10.1111/j.1365-2796.2010.02282.x
Cho RJ et al., A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. (1998)
PubMed: 9702192
Spellman PT et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. (1998)
PubMed: 9843569
Orlando DA et al., Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature. (2008)
PubMed: 18463633 DOI: 10.1038/nature06955
Rustici G et al., Periodic gene expression program of the fission yeast cell cycle. Nat Genet. (2004)
PubMed: 15195092 DOI: 10.1038/ng1377
Uhlén M et al., Tissue-based map of the human proteome. Science (2015)
PubMed: 25613900 DOI: 10.1126/science.1260419
Nigg EA et al., The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. (2011)
PubMed: 21968988 DOI: 10.1038/ncb2345
Doxsey S., Re-evaluating centrosome function. Nat Rev Mol Cell Biol. (2001)
PubMed: 11533726 DOI: 10.1038/35089575
Bornens M., Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. (2002)
PubMed: 11792541
Conduit PT et al., Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. (2015)
PubMed: 26373263 DOI: 10.1038/nrm4062
Tollenaere MA et al., Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci. (2015)
PubMed: 25173771 DOI: 10.1007/s00018-014-1711-3
Prosser SL et al., Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci. (2020)
PubMed: 31896603 DOI: 10.1242/jcs.239566
Rieder CL et al., The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. (2001)
PubMed: 11567874
Badano JL et al., The centrosome in human genetic disease. Nat Rev Genet. (2005)
PubMed: 15738963 DOI: 10.1038/nrg1557
Clegg JS., Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. (1984)
PubMed: 6364846
Luby-Phelps K., The physical chemistry of cytoplasm and its influence on cell function: an update. Mol Biol Cell. (2013)
PubMed: 23989722 DOI: 10.1091/mbc.E12-08-0617
Luby-Phelps K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. (2000)
PubMed: 10553280
Ellis RJ., Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. (2001)
PubMed: 11590012
Bright GR et al., Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol. (1987)
PubMed: 3558476
Kopito RR., Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. (2000)
PubMed: 11121744
Aizer A et al., Intracellular trafficking and dynamics of P bodies. Prion. (2008)
PubMed: 19242093
Carcamo WC et al., Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol. (2014)
PubMed: 24411169 DOI: 10.1016/B978-0-12-800097-7.00002-6
Lang F., Mechanisms and significance of cell volume regulation. J Am Coll Nutr. (2007)
PubMed: 17921474
Becht E et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. (2018)
PubMed: 30531897 DOI: 10.1038/nbt.4314
Schwarz DS et al., The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. (2016)
PubMed: 26433683 DOI: 10.1007/s00018-015-2052-6
Friedman JR et al., The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. (2011)
PubMed: 21900009 DOI: 10.1016/j.tcb.2011.07.004
Travers KJ et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. (2000)
PubMed: 10847680
Roussel BD et al., Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. (2013)
PubMed: 23237905 DOI: 10.1016/S1474-4422(12)70238-7
Neve EP et al., Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum. Curr Opin Drug Discov Devel. (2010)
PubMed: 20047148
Kulkarni-Gosavi P et al., Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett. (2019)
PubMed: 31378930 DOI: 10.1002/1873-3468.13567
Short B et al., The Golgi apparatus. Curr Biol. (2000)
PubMed: 10985372 DOI: 10.1016/s0960-9822(00)00644-8
Wei JH et al., Unraveling the Golgi ribbon. Traffic. (2010)
PubMed: 21040294 DOI: 10.1111/j.1600-0854.2010.01114.x
Wilson C et al., The Golgi apparatus: an organelle with multiple complex functions. Biochem J. (2011)
PubMed: 21158737 DOI: 10.1042/BJ20101058
Farquhar MG et al., The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. (1998)
PubMed: 9695800
Brandizzi F et al., Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. (2013)
PubMed: 23698585 DOI: 10.1038/nrm3588
Potelle S et al., Golgi post-translational modifications and associated diseases. J Inherit Metab Dis. (2015)
PubMed: 25967285 DOI: 10.1007/s10545-015-9851-7
Yoon TY et al., SNARE complex assembly and disassembly. Curr Biol. (2018)
PubMed: 29689222 DOI: 10.1016/j.cub.2018.01.005
Leduc C et al., Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol. (2015)
PubMed: 25660489 DOI: 10.1016/j.ceb.2015.01.005
Lowery J et al., Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function. J Biol Chem. (2015)
PubMed: 25957409 DOI: 10.1074/jbc.R115.640359
Robert A et al., Intermediate filament dynamics: What we can see now and why it matters. Bioessays. (2016)
PubMed: 26763143 DOI: 10.1002/bies.201500142
Fuchs E et al., Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. (1994)
PubMed: 7979242 DOI: 10.1146/annurev.bi.63.070194.002021
Janmey PA et al., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. (1991)
PubMed: 2007620
Köster S et al., Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol. (2015)
PubMed: 25621895 DOI: 10.1016/j.ceb.2015.01.001
Herrmann H et al., Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. (2007)
PubMed: 17551517 DOI: 10.1038/nrm2197
Gauster M et al., Keratins in the human trophoblast. Histol Histopathol. (2013)
PubMed: 23450430 DOI: 10.14670/HH-28.817
Ouyang W et al., Analysis of the Human Protein Atlas Image Classification competition. Nat Methods. (2019)
PubMed: 31780840 DOI: 10.1038/s41592-019-0658-6
Janke C., The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol. (2014)
PubMed: 25135932 DOI: 10.1083/jcb.201406055
Goodson HV et al., Microtubules and Microtubule-Associated Proteins. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29858272 DOI: 10.1101/cshperspect.a022608
Wade RH., On and around microtubules: an overview. Mol Biotechnol. (2009)
PubMed: 19565362 DOI: 10.1007/s12033-009-9193-5
Desai A et al., Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. (1997)
PubMed: 9442869 DOI: 10.1146/annurev.cellbio.13.1.83
Conde C et al., Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. (2009)
PubMed: 19377501 DOI: 10.1038/nrn2631
Wloga D et al., Post-translational modifications of microtubules. J Cell Sci. (2010)
PubMed: 20930140 DOI: 10.1242/jcs.063727
Schmoranzer J et al., Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell. (2003)
PubMed: 12686609 DOI: 10.1091/mbc.E02-08-0500
Skop AR et al., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. (2004)
PubMed: 15166316 DOI: 10.1126/science.1097931
Waters AM et al., Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. (2011)
PubMed: 21210154 DOI: 10.1007/s00467-010-1731-7
Matamoros AJ et al., Microtubules in health and degenerative disease of the nervous system. Brain Res Bull. (2016)
PubMed: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016
Jordan MA et al., Microtubules as a target for anticancer drugs. Nat Rev Cancer. (2004)
PubMed: 15057285 DOI: 10.1038/nrc1317
Nunnari J et al., Mitochondria: in sickness and in health. Cell. (2012)
PubMed: 22424226 DOI: 10.1016/j.cell.2012.02.035
Friedman JR et al., Mitochondrial form and function. Nature. (2014)
PubMed: 24429632 DOI: 10.1038/nature12985
Calvo SE et al., The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. (2010)
PubMed: 20690818 DOI: 10.1146/annurev-genom-082509-141720
McBride HM et al., Mitochondria: more than just a powerhouse. Curr Biol. (2006)
PubMed: 16860735 DOI: 10.1016/j.cub.2006.06.054
Schaefer AM et al., The epidemiology of mitochondrial disorders--past, present and future. Biochim Biophys Acta. (2004)
PubMed: 15576042 DOI: 10.1016/j.bbabio.2004.09.005
Lange A et al., Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. (2007)
PubMed: 17170104 DOI: 10.1074/jbc.R600026200
Ashmarina LI et al., 3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondria. J Lipid Res. (1999)
PubMed: 9869651
Wang SC et al., Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. (2009)
PubMed: 19861462 DOI: 10.1158/1078-0432.CCR-08-2813
Jeffery CJ., Moonlighting proteins. Trends Biochem Sci. (1999)
PubMed: 10087914
Jeffery CJ., Why study moonlighting proteins? Front Genet. (2015)
PubMed: 26150826 DOI: 10.3389/fgene.2015.00211
Pancholi V., Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci. (2001)
PubMed: 11497239 DOI: 10.1007/pl00000910
Chapple CE et al., Extreme multifunctional proteins identified from a human protein interaction network. Nat Commun. (2015)
PubMed: 26054620 DOI: 10.1038/ncomms8412